
Michele Albano

28-Aug-17 CiWork 2015

• IoT and Middleware

• 6LoWPAN

• CoAP

• MQTT

• Arrowhead

• First Industrial Revolution (1781):
– Invention of the (patented) steam engine by James Watt

– Mechanical production

• Second Industrial Revolution / Technological Revolution
(1874):
– Invention of the incandescent light bulb

– Electricity, moving assembly line, division of labour

– Mass Production

• Third Industrial Revolution (1969):
– Invention of the microprocessor

– Electronics, IT

– Automated production

• Fourth Industrial Revolution / Industrie 4.0 /
Digitizing Industry (today)

• Its focus is on:

– Sensing / acting on the environment by means
of Cyber-Physical Systems

– Ubiquitous fruition of information by means of
IoT

– Computation on the Cloud

– Machine learning

IoT Use of IP

• All devices have an IP address

• Devices are accessible through the

Internet

28-Aug-17 A CISTER Template

• The Industrial Internet of Things (IIoT) is the
use of Internet of Things (IoT) technologies
in the industrial context (e.g.:
manufacturing).

• IIoT incorporates:
– machine and product sensoring

– machine learning and big data technology
crunching sensor data

– machine-to-machine (M2M) communications
and automation technologies on a global scale

28-Aug-17 A CISTER Template

• IIoT has a great potential for:

– quality control

– sustainable and green practices

– supply chain traceability

– overall supply chain efficiency

– user in the loop

28-Aug-17 A CISTER Template

• The Industrial Internet of Things will
transform companies and countries,
opening up a new era of economic
growth and competitiveness.

• A future where the intersection of
people, data and intelligent machines
will have far-reaching impacts on the
productivity, efficiency and operations of
industries around the world.

28-Aug-17 A CISTER Template

Accenture, “https://www.accenture.com/us-en/labs-insight-industrial-internet-

of-things.aspx”

28-Aug-17 A CISTER Template

28-Aug-17 A CISTER Template

Data Analysis
(Linux , Play2, Spark)

ERP
(LN)

NC
(Windows XP) DB

API

Safety
PLC API

ETL

Embedded PLC

Press App

MANTIS Sensors

I/O

I/O

MANTIS EPC
(Raspberry Pi Linux)

API

I/O ETL

I/O

DB

API

ETL

HMI

API

GUI
Expert System

API

Data

API
Models

ETL

Web
App

Model Management

ETL

• IoT and Middleware

• 6LoWPAN

• CoAP

• MQTT

• Arrowhead

• Extensive interoperability

– Other wireless embedded 802.15.4 network devices

– Devices on any other IP network link (WiFi, Ethernet, GPRS, Serial lines, …)

• Established security

– Authentication, access control, and firewall mechanisms

– Network design and policy determines access, not the technology

• Established naming, addressing, translation, lookup, discovery

• Established proxy architectures for higher-level services

– NAT, load balancing, caching, mobility

• Established application level data model and services

– HTTP/HTML/XML/SOAP/REST, Application profiles

• Established network management tools

– Ping, Traceroute, SNMP, … OpenView, NetManager, Ganglia, …

• Transport protocols

– End-to-end reliability in addition to link reliability

• Most “industrial” (wired and wireless) standards support an IP option

802.15.4 has small PDUs

Maximum PHY PDU is 127 bytes

IPv6 header is 40 octets, UDP header is 8 octets

802.15.4 MAC header can be up to 25 octets (null
security) or 25+21=46 octets (AES-CCM-128)

With the 802.15.4 frame size of 127 octets, we have

127-25-40-8 = 54 octets (null security)

127-46-40-8 = 33 octets (AES-CCM-128)

of space left for application data

… and IP datagrams have a typical MTU of 1280
bytes

IoT (IP) and 802.15.4

13

• 6LoWPAN introduces an adaptation layer between the IP stack’s

link and network layers

• The adaptation layer enables efficient transmission of IPv6

datagrams over 802.15.4

ZigBee IP stack diagram

15

802.15.4 MAC

IPv6

TCP UDPNetwork

Management

(ND, RPL)

6lowpan adaptation

802.15.4 PHY

Application

Security

ZigBee SE 2.0

ZigBee IP

stack

Stack

Security

• Introducing the idea of stacked header:

– You only pay for what you use

• This layer provides :

– Header compression

– Fragmentation

– Support for layer-two forwarding

• All header formats are identified using dispatch header

• The mesh header is used to encode the hop limit

• The fragmentation header supports the fragmentation and reassembly of

payloads

• 1)Point to Point Small Packet

• 2)Fragmented Large Packet

• 3)Mesh Transmitted Packet

• Mesh Under Routing

– No IP routing

– Routing within the LoWPAN

• Route Over Routing

– Routing at the IP layer

– Utilizing network-layer capabilities defined by IP

• 6LoWPAN compresses the header reducing
redundancy
• Some information is deducted from underlying link layer

• This achieves an efficient transport of IPv6 headers
and next headers
• In some cases, IPv6 addresses can be deduced from

MAC addresses

• IP payload length can be deduced from L2/L1 length
information

• Traffic Class and Flow Label values are set to zero

• Version field value is IPv6

• Hop limit can be set to predefined values

• Example of header compression

Version

Traffic Class

Flow Label

Payload

lengthNext header

Hop limit

Source

addressDest. address

IPv6 base header fields

Elided; v6 only

Set to 0

Set to 0

Deduced from link info

Maybe compressed

Set to a known value

Deduced from MAC

address or compressed

or uncompressed carried

inline

Version

Traffic class

Flow Label

Payload

lengthNext header

Hop limit

Source

addressDest. address

6LoWPAN

Potential IPv6 base header

fields to be carried inline

 Comprises a Dispatch

 Identifies the type of header immediately

following the Dispatch Header.

 Similar to a Frame Control field.

 It follows a LOWPAN IP Header Compression

(LOWPAN_IPHC) field

• Used with mesh-under routing approach

– Only performed by FFDs

• Hop left field is decremented by one every hop

– Frame is discarded when hop left is 0

• Address fields are unchanged

A B C

Originator Final

802.15.4

Header

Mesh

Header

B
Orig FinalDst Src

A A D Data

D

802.15.4

Header

Mesh

Header

D
Orig FinalDst Src

C A D Data

Application

Transport

Network (IPv6)

6LoWPAN Adaptation

802.15.4 MAC

802.15.4 PHY

Application

Transport

Network (IPv6)

6LoWPAN Adaptation

802.15.4 MAC

802.15.4 PHY

Mesh-under routing Route-over routing

Routing

• Fragmentation is required when IPv6 payload size

exceeds that of IEEE 802.15.4 payload limit

• All fragments are in units of 8 bytes

(in 8-byte units)

• IoT and Middleware

• 6LoWPAN

• CoAP

• MQTT

• Arrowhead

• Direct integration Pattern

• Gateway Integration Pattern

• Cloud Integration Pattern

• REST

• CoAp

• Some IoT devices have full internet access.
– May provide an HTTP server running over TCP/IP, and

– connect direcly to the internet (WiFi, Ethernet, cellular,
etc).

– may be used to implement a Direct Integration Pattern –
REST on devices.

Thing running an HTPP

server providing a REST

style interface.

Client

• Typical use case: The Thing is not battery powered and communicates with low latency

to a local device like a phone.

• Example: Use a phone to communicate via WiFi (with WiFi router) to an HTTP server

on a device. Use web sockets for publish/subscribe.

IoT Device

• Some IoT devices do not have full internet access

– May support only Zigbee or Bluetooth or 802.15.4

– We are not sending IP packets to these devices – they
are constrained. This is the Gateway Integration Pattern.

Thing providing access via

non-web protocol.

Gateway providing

full REST API

Client

IoT Device

• Some IoT devices have access to the cloud

and need powerful and scalable cloud

support. This is the Cloud Integration

Pattern.

Thing may or may not use

web protocols, but is able

to communicate with a

gateway in the cloud.

Gateway providing

full REST API

Client

IoT Device

REST API Design Principles

Principle Implementation

Constrained user interface HTTP GET, POST, DELETE, PUT

Standard status codes HTTP codes

Well designed and standard

URI’s

Naming. Well Designed URI’s representing

a resource. Protocol and location.

Identification of resources.

Standard representations JSON or XML messages

HATEOS Messages returning pointers or links for

further discovery

Statelessness Simple request/response required no

conversational state. Easy to scale.

• GET /basement/water/temperature 200 OK

application/text

40.5 F

• GET /basement/water/volume 200 OK

application/text

200 G

HTTP codes reused as

return values.

– A key IoT standard

– Open IETF standard since June 2014

– Based on web standards, easily integrates with HTPP. Is not
simply a compressed version of HTTP.

– Built for small, constrained, imbedded, occasionally sleeping
devices

– Some built-in reliability

– May run over 6LoWPan (IP-like layer over IEEE 802.15.4)

– Use on low power, low bandwidth, lossy networks

– Over UDP or SMS on cellular networks

– DTLS for security

– Asynchronous subscriptions and notifications over UDP

– Built-in resource discovery

– Peer to peer or client server and multi-cast requests

• Connection oriented and synchronous

• TCP 3 way handshake with server

• HTTP GET /kitchen/light

• HTTP response

• TCP 2 way termination

• Too much work for simple IoT applications

• CoAP does not support all features of HTTP

Battery powered Thing providing CoAp.

Communication uses UDP over a

PAN protocol, e.g., 6LoWPAN over

IEEE 802.15.4 or Bluetooth Low Energy

Gateway providing

full REST API

Client

• Interaction: request/response RESTful similar to HTTP

• Messages: smaller than HTTP, much lower overhead

Example: BLE nodes

• Sensors and actuators on BLE nodes are simply CoAP resources

• To obtain a current temperature, send a GET request

• To turn on/off or toggle LEDs, use a PUT request

IoT Device

– Has a scheme coap://

– Has a well known port.

– GET, POST, PUT, DELETE encoded in binary (1 == GET)

– Block transfer support.

– Confirmable messages require an ack with message ID.

– Non-confirmable messages do not require an ack.

– Example:

CoAP Client CoAP Server

----> CON {id} GET /basement/light Confirmable request

<---- ACK {id} 200 Content {“status” : “on”} Piggy back response

(likely in binary)

CoAP Client CoAP Server

----> CON {id} GET /basement/light

lost request timeout!!

----> CON {id} GET /basement/light

this time it gets through

<---- ACK {id} 200 Content {“status” : “on”}

The {id} allows us to detect duplicates.

CoAP Client CoAP Server

----> CON {id} PUT /basement/cleanFloor Token: 0x22 Needs time

<---- ACK {id}

<----- CON {newID} 200 Content /basement/cleanFloor Token: 0x22 Done

----> ACK {newID}

Token to recognize which request was satisfied

CoAP Client CoAP Server

----> CON {id} GET /basement/light Observe: 0 Token: 0x22

<---- ACK 200 {id} Observer: 27 Token 0x22

<---- CON 200 Observe: 28 Token: 0x22 {“light” : ”off”}

-----> ACK Token: 0x22

<---- CON 200 Observe: 28 Token: 0x22 {“light” : ”on”}

:

:

etc.

• Implementing by means of REST (POST to register, GET to
discover, PUT to update, DELETE to remove)

• Different (higher level) than service discovery.

• We register a device as web resources using a discovery
service, to find it later on the fly.

• Links are returned (coap:// ……)

– Links may include a rel attribute.

– The rel attribute specifies the relationship between the current
document and the linked document.

• A well known resource can be used to discover other resources.

– Perform a GET on the well known resource. Returned content is a
list of links with REL attributes.

• Resource directories may be used to register services.

• IoT and Middleware

• 6LoWPAN

• CoAP

• MQTT

• Arrowhead

• A “request” is sent to a server via URL

– Eg.
http://api.example.com/resources/user/10367
21?name=something

• Response is usually text in HTML, XML, or
JSON

• Great if your asking for something

– What about “push”

– Eg. Server wants to tell device to do something

http://api.example.com/resources/user/1036721?name=something

• Lightweight

• Publish/subscribe

• Over TCP/IP

• Aimed at remote sensors and control devices

applications

• For communication through low bandwidth,

unreliable or intermittent communications

• Available under a royalty free license

Decoupled in space and time.

The clients do not need each others’ IP address and port

(space) and they do not need to be running at the same time

(time).

The broker’s IP and port must be known by clients.

Namespace hierarchy used for topic filtering.

It may be the case that a published message is never

consumed by any subscriber.

Sensor devices publish
messages to topics that
describe the device or
reading attributes

Sensor devices publish
messages to topics that
describe the device or
reading attributes

Applications receive
updates to specific topics
Applications receive
updates to specific topics

A broker retains messages to
reduce network traffic and power,
while increasing reliability when
devices drop out

A broker retains messages to
reduce network traffic and power,
while increasing reliability when
devices drop out

Servers and storage can
be used to log all
messages in a central
location

Servers and storage can
be used to log all
messages in a central
location

• Topic
– A string identifier of the form

“a/b/c/d/e”, where slashes separate
subtopics

– Clients publish or subscribe to topics

– # is the glob symbol, i.e “a/#” means all
subtopics of “a”

• Broker
– Server program that receives, buffers,

and send messages based on topic

– Each topic may contain up to 1 message
value at a time, which may be retained

• Client
– Anything that connects to the MQTT

broker: serial devices, python scripts,
java programs, etc.

– Clients send a unique identifier when
they connect to the broker, e.g. MAC
address

A house publishes information about itself on:

<country>/<region>/<town>/<postcode>/<house>/energyConsumption

<country>/<region>/<town>/<postcode>/<house>/solarEnergy

<country>/<region>/<town>/<postcode>/<house>/alarmState

<country>/<region>/<town>/<postcode>/<house>/alarmState

And subscribes for control commands:

<country>/<region>/<town>/<postcode>/<house>/thermostat/setTemp

• QoS

– Level 0: Deliver message at most once (fire and
forget)

– Level 1: Deliver message at least once

– Level 2: Deliver message exactly once

• Persistent Sessions

– Client can connect to broker with the clean session
flag set false

– Messages are retained even if the client disconnects

– Clients must also maintain messages when broker
disconnects

– Standard does not define how many or how long (until
we run out of resources)

• Message Retention

– Individual messages have a retention flag

– Message is retained indefinitely

• LWT (Last Will & Testament)

– A device can indicate a final

message to send when it

disconnects from the broker

– Often used to set status to “offline”

BrokerCell Phone
client.publish(‘lightSwitch/1’, ‘toggle’)

WiFi Switch

Toggle Switch

‘toggle’

• MQTT always has a broker

• MQTT broker is the only “connection”
– To detect whether device is connected to broker, use status topic

• MQTT messages are all plain text
– No type information (e.g. double, string, table)

– No meta-data fields (e.g. timestamp, alarm values)

• A subscriber can subscribe to an absolute topic or can use
wildcards:
– Single-level wildcards “+” can appear anywhere in the topic string

– Multi-level wildcards “#” must appear at the end of the string

– Wildcards must be next to a separator

– Cannot be used wildcards when publishing

– For example
• UK/Hants/Hursley/SO212JN/1/energyConsumption

– Energy consumption for 1 house in Hursley

• UK/Hants/Hursley/+/+/energyConsumption
– Energy consumption for all houses in Hursley

• UK/Hants/Hursley/SO212JN/#
– Details of energy consumption, solar and alarm for all houses in SO212JN

• The message header for each MQTT command message contains a fixed header

– Fixed length of 2 bytes

• Some messages also require a variable header and a payload.

• The format for each part of the message header:

— DUP: Duplicate delivery

— QoS: Quality of Service

— RETAIN: RETAIN flag

—This flag is only used on PUBLISH messages. When a client sends a

PUBLISH to a server, if the Retain flag is set (1), the server should hold on to

the message after it has been delivered to the current subscribers.

—This allows new subscribers to instantly receive data with the retained, or

Last Known Good, value.

• Runs over TCP or TLS.

– May use Websockets from

within a browser.

– MQTT–SN uses UDP

packets or serial

communication.

• As soon as you subscribe

you receive the most

recently published message

• IoT and Middleware

• 6LoWPAN

• CoAP

• MQTT

• Arrowhead

28-Aug-17 A CISTER Template

• Service Oriented Architecture (SOA)

approach supporting local cloud automation

functionalities

• Local Clouds logically contain a set of

application systems

• All interactions are mediated by services,

which are produced / consumed by systems,

which are run on devices

Services are either

• User Services, providing the application functionalities on each
particular scenario (business logic)

• Core Services, provided by the Arrowhead Framework and satisfying
non-functional requirements (housekeeping)
– At least: Authentication & Authorization (AA) Service for devices,

Registration Service (SD) for devices and services, and Orchestration (O)
Service to look-up for devices/services, and to create more complex
services

28-Aug-17 A CISTER Template

OAA SD

Application

system

Offering a user service

28-Aug-17 A CISTER Template

• Mandatory services:
– Service Discovery;

– Orchestration;

– Authorization and Authentication

• A set of optional services:
– QoS Manager

– Configuration Manager

– Event handler

• A detailed documentation system

• Several kinds of encryption protocols are
supported

An Arrowhead-enabled SoS is based on the concept of Local Cloud:

• A bounded set of computational resources used by stakeholders to attain a goal

• Controls security
– Restricts access to authenticated Devices/Systems/Services.

• Autonomous
– Contains all core services needed to be able to function

Relating QoS to a Local Cloud simplifies QoS monitoring and reduces the QoS
managing complexity.

28-Aug-17 A CISTER Template

AA
OSD

Application

system

A
p

p
li
c
a

ti
o

n

s
ys

te
mA

p
p

lic
a

tio
n

s
ys

te
m

Arrowhead Local Cloud

28-Aug-17 CiWork 2015

